\displaystyle 1)\frac{d}{dx}(x\displaystyle ^{n})=nx\displaystyle ^{n-1} \displaystyle \frac{d}{dx}(x\displaystyle ^{n}) কে অন্তরিকরন বা (Differentiation) করলে nx\displaystyle ^{n-1}
2)\displaystyle \frac{d}{dx}(x)=1 \displaystyle \frac{d}{dx}(x) কে অন্তরিকরন বা (Differentiation) করলে 1
3)\displaystyle \frac{d}{dx}(c)=0 \displaystyle \frac{d}{dx}(c) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \ 0\ \
4)\displaystyle \frac{d}{dx}( lnx)=\displaystyle \frac{1}{x},(x>0) \displaystyle \frac{d}{dx}(lnx) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \frac{1}{x}
\displaystyle 5)\frac{d}{dx}(e\displaystyle ^{mx})=me\displaystyle ^{mx} \displaystyle \frac{d}{dx}(e\displaystyle ^{mx}) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle me^{mx}
6)\displaystyle \frac{d}{dx}(e\displaystyle ^{x})=e\displaystyle ^{x} \displaystyle \frac{d}{dx}(e\displaystyle ^{x}) কে অন্তরিকরন বা (Differentiation) করলে \displaystyle e^{x} \
7)\displaystyle \frac{d}{dx}(a\displaystyle ^{x})=\displaystyle a^{x}.lna \displaystyle \frac{d}{dx}(lnx) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \frac{1}{x}
8)\displaystyle \frac{d}{dx}(sinx)=cosx \displaystyle \frac{d}{dx}(sinx) কে অন্তরিকরন বা (Differentiation) করলে cosx
\displaystyle 9)\frac{d}{dx}(cosx)= -sinx \displaystyle \frac{d}{dx}(cosx) কে অন্তরিকরন বা (Differentiation) করলে-\displaystyle sinx\
\displaystyle 10)\frac{d}{dx}(tanx)=sec\displaystyle ^{2}x \displaystyle \frac{d}{dx}(tanx) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \ sec^{2} x\ \
11)\displaystyle \frac{d}{dx}(cotx)= -cosec\displaystyle ^{2}x \displaystyle \frac{d}{dx}(cotx) কে অন্তরিকরন বা (Differentiation) করলে -cosec\displaystyle ^{2}x
\displaystyle 12)\frac{d}{dx}(secx)= secx tanx \displaystyle \frac{d}{dx}(secx) কে অন্তরিকরন বা (Differentiation) করলে secx tanx
13)\displaystyle \frac{d}{dx}(cosecx)= -cosecx cotx \displaystyle \ \ \ \ \frac{d}{dx}(cosecx) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \ -cosecx\ cotx\
14)\displaystyle \frac{d}{dx}(sin\displaystyle ^{-1}x)= \displaystyle \frac{1}{\sqrt{1-x^{2}}} \displaystyle \frac{d}{dx}(sin\displaystyle ^{-1}x) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \ \frac{1}{\sqrt{1-x^{2}}}
15)\displaystyle \frac{d}{dx}(cos\displaystyle ^{-1}x) = –\displaystyle \frac{1}{\sqrt{1-x^{2}}} \displaystyle \frac{d}{dx}(cos\displaystyle ^{-1}x) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \ -\frac{1}{\sqrt{1-x^{2}}}
16)\displaystyle \frac{d}{dx}(tan\displaystyle ^{-1}x)= \displaystyle \frac{1}{1+x^{2}} \displaystyle \frac{d}{dx}(tan\displaystyle ^{-1}x কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \frac{1}{\ 1+x^{2}}
17)\displaystyle \frac{d}{dx}(cot\displaystyle ^{-1}x)= – \displaystyle \frac{1}{1+x^{2}} \displaystyle \frac{d}{dx}(cot\displaystyle ^{-1}x) কে অন্তরিকরন বা (Differentiation) করলে – \displaystyle \frac{1}{1+x^{2}}
18)\displaystyle \frac{d}{dx}(sec\displaystyle ^{-1}x)= \displaystyle \frac{1}{x\sqrt{1-x^{2}}} \displaystyle \frac{d}{dx}(sec\displaystyle ^{-1}x) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \frac{1}{\ x\sqrt{1-x^{2}}}
19)\displaystyle \frac{d}{dx}(sec\displaystyle ^{-1}x)= \displaystyle \frac{1}{x\sqrt{1-x^{2}}} \displaystyle \frac{d}{dx}(lsec\displaystyle ^{-1}x) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \frac{1}{\ x\sqrt{1-x^{2}}}
20)\displaystyle \frac{d}{dx}(cosec\displaystyle ^{-1}x)= \displaystyle -\frac{1}{x\sqrt{1-x^{2}}} \displaystyle \frac{d}{dx}(cosec\displaystyle ^{-1}x) কে অন্তরিকরন বা (Differentiation) \displaystyle \ -\frac{1}{x\sqrt{1-x^{2}}}
21)\displaystyle \frac{d}{dx}(\displaystyle \sqrt{x})= \displaystyle \frac{1}{2\sqrt{x}} \displaystyle \frac{d}{dx}(\displaystyle \sqrt{x}) কে অন্তরিকরন বা (Differentiation) করলে\displaystyle \frac{1}{\ 2\sqrt{x}}
\displaystyle 22)\frac{d}{dx}( uv)= u\displaystyle \frac{d}{dx}(v)+v\displaystyle \frac{d}{dx}(u) \displaystyle \frac{d}{dx}(uv) কে অন্তরিকরন বা (Differentiation) u\displaystyle \frac{d}{dx}(v)+v\displaystyle \frac{d}{dx}(u)

23)\displaystyle \frac{d}{dx}(\displaystyle \frac{u}{v})=\displaystyle \frac{v\frac{d}{dx}( u) -u\frac{d}{dx}( v)}{v^{2}} \displaystyle \frac{d}{dx}(\displaystyle \frac{u}{v}) কে অন্তরিকরন বা (Differentiation) \displaystyle \frac{v\frac{d}{dx}( u) -u\frac{d}{dx}( v)}{v^{2}}

Post Author: showrob

Leave a Reply

Your email address will not be published. Required fields are marked *

96 ÷ 16 =