vii) sin{ln(secx)}\displaystyle ^{2}কে x এর সাপেক্ষে অন্তরীকরণ করে পাই,

vii) sin{ln(secx)}\displaystyle ^{2}
মনে করি,
y= sin{ln(secx)}\displaystyle ^{2}
x এর সাপেক্ষে অন্তরীকরণ করে পাই,
\displaystyle \frac{dy}{dx}=\displaystyle \frac{d}{dx}[sin{ln(secx)}\displaystyle ^{2}]

=2sin{ln(secx)}\displaystyle \frac{d}{dx}sin{ln(secx)}
=2sin{ln(secx)}.cos{ln(secx)}\displaystyle \frac{d}{dx}{ln(secx)}

=2sin{ln(secx)}.cos{ln(secx)}.\displaystyle \frac{1}{secx}\displaystyle \frac{d}{dx}(secx)

=2sin{ln(secx)}.cos{ln(secx)}.\displaystyle \frac{1}{secx}.secx tanx

=2sin{ln(secx)}.cos{ln(secx)}.tanx

=tanx sin2{ln(secx)} (ans):

Post Author: showrob

Leave a Reply

Your email address will not be published. Required fields are marked *

9 + 1 =